skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mishra, Aditi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The electrospinning method is increasingly in demand due to its capability to produce fibers in the nanometer to micrometer range, with applications in diverse fields including biomedical, filtration, energy storage, and sensing. Many of these applications demand control over fiber layout and diameter. However, a standard flat plate collector yields random fibers with limited control over diameter and density. Other viable solutions offering a higher level of control are either scarce or substantially expensive, impeding the accessibility of this vital technique. This study addresses the challenge by designing an affordable laboratory-scale electrospinning setup with interchangeable collectors, enabling the creation of targeted fibers from random, aligned, and coiled. The collectors include the standard flat plate and two additional designs, which are a rotating drum and a spinneret tip collector. The rotating drum collector has adjustable speed control to collect aligned fibers and exhibits stability even at high rotational speeds. The spinneret tip collector was designed to produce helically coiled fibers. The setup was validated by directed fiber formation using polycaprolactone (PCL), a biodegradable and FDA-approved polymer. Overall, the uniqueness of the design lies in its affordability, modifiability, and replicability using readily available materials, thus extending the reach of the electrospinning technique. 
    more » « less